ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, 11, 60439

ANL-96/5

Installation Guide to mpich,

a Portable Implementation of MPI

by

William Gropp and Ewing Lusk

Mathematics and Computer Science Division

July 1996

This work was supported by the Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Computational and Technology Research, U.S. Department of Energy,
under Contract W-31-109-Eng-38.

Contents

Abstract

Quick Start

Obtaining and Unpacking the Distribution

Documentation

Configuring mpich

4.1 Building a Production mpich
4.2 What If There Is No Fortran Compiler? . .

4.3 Special Issues for Heterogeneous Networks .

Compiling mpich

5.1 Getting tcl, tk, and wish

5.2 Building Multiple Devices or Architectures

Running an MPI Program

6.1 Special Considerations for Running on a Network of Workstations

6.1.1 Dealing with Automounters
6.1.2 Faster Job Startup
6.1.3 Stopping the Servers
6.1.4 Managing the Servers

6.2 Special Considerations for Running with Shared Memory

Thorough Testing

Installing mpich for Others to Use

8.1 User Commands
8.2 Installing Documentation
8.21 Man Pages,
8.2.2 Web Versions of Man Pages
8.2.3 Examples

iii

12
12
12

13
13
13

13
15
15
16
18
18
19

19

9 Internationalization

10 Benchmarking mpich

11 The mpich Programming Environment
11.1 Introduction o oo oL L
11.2 mpirun, a Portable Startup Seript oo L.
11.3 The mpicec and mpif77 Commands
11.4 mpireconfig, a Way to Create Makefiles
11.5 nupshot, a Way to View Logfiles

12 Automatic Report Generation

13 Problems
13.1 Submitting Bug Reports
13.2 Problems Configuring
13.2.1 General L e
13.2.2 LINUX . . oo e
13.3 Problems Building mpich 0oL
13.3.1 General L e
13.3.2 Workstation Networks o oo o
13.3.3 Cray T3D o e
13.3.4 Intel i860
13.3.5 Intel Paragon
13.3.6 SGL . . . oo e
13.3.7 LINUX . . oo e
13.3.8 IBM SP2 e
13.3.9 DEC ULTRIX e e
13.4 Problems in Testing L

Acknowledgments

References

v

22

23

23
23
24
28
29
29

29

30
30
30
30
31
32
32
33
34
34
34
35
35
35
36
37

37

38

Installation Guide to mpich,

a Portable Implementation of MPI
by

William Gropp and Ewing Lusk

Abstract

MPT (Message Passing Interface) is a standard specification for message-passing li-
braries. mpich is a portable implementation of the full MPI specification for a wide va-
riety of parallel computing environments, including workstation clusters and massively
parallel processors. mpich contains, along with the MPI library itself, a programming
environment for working with MPI programs. The programming environment includes
a portable startup mechanism, several profiling libraries for studying the performance
of MPI programs, and an X interface to all of the tools. This guide explains how to
compile, test, and install mpich and its related tools.

This is a document in progress: hopefully helpful, but hardly whole. Please send sug-
gestions for improvements (or impairments) to mpi-bugs@mcs.anl.gov. Details on using
the MPICH implementation are presented in a separate users guide for mpich.

1 Quick Start

Here is a set of steps for setting up and minimally testing mpich. Details and instructions
for a more thorough tour of mpich’s features, including installing, validating, benchmarking,
and using the performance evaluation tools, are given in the following sections.

1. If you have gunzip, get mpich.tar.gz; otherwise, get mpich.tar.Z by anonymous
ftp from info.mcs.anl.gov in the directory pub/mpi. (If that file is too big, try
getting the pieces from pub/mpi/mpisplit and cating them together.)

2. gunzip -c mpich.tar | tar xovf - or zcat mpich.tar.Z | tar xovf -
3. cd mpich
4. configure -arch=sun4 -device=ch_p4 (for example)

5. make >& make.log (in C-shell syntax). Depending on the load on your system and
on your file server, this may take anywhere from 10 minutes to an hour or more.

6. To run workstation networks or on a single workstation, edit the file
mpich/util/machines/machines.sample to reflect your local host names for the
machines of the architecture given with -arch= above. On parallel machines, this
step is not needed. See the README file in the mpich/util/machines directory for a
description of the format.

7. Build and run a simple test program:

cd examples/basic
make cpi
mpirun -np 4 cpi

8. make PREFIX=/usr/local/mpi install to install MPICH into /usr/local/mpi.

9. (Optional) Build the rest of the mpich environment: For the ch_p4 device, use of the
secure server (see Section 6.1.2) can speed job startup; you can build it with

make serv_p4

The nupshot program is a faster version of upshot, but requires tk source code. If
you have this package, you can build nupshot with

make nupshot

At this point you have run an MPI program on your system. In the following sections we
go through these steps in more detail and describe other aspects of the mpich distribution
you might wish to explore.

The companion users guide [5] gives more information on building and running MPI
programs with mpich.

2 Obtaining and Unpacking the Distribution

mpich can be obtained by anonymous ftp from the site info.mcs.anl.gov. Go to the
directory pub/mpi and get the file mpich.tar.Z. This file name is a link to the most recent
verstion of mpich. Currently it is about 4 megabytes in size. The file is a compressed tar
file, so it may unpacked with

zcat mpich.tar.Z | tar xvf -
If your system does not have zcat, you must uncompress it in a separate step:

uncompress mpich.tar.Z
tar xvf mpich.tar

This will create a single directory called mpich, containing in various subdirectories the
entire distribution, including all of the source code, some documentation (including this
guide), man pages, the mpich environment described in Section 11, and example programs.
In particular, you should see the following files and directories:

COPYRIGHT Copyright statement. This code is free but not public domain. It is
copyrighted by the University of Chicago and Mississippi State University.

Makefile.in Template for the Makefile, which will be produced when you run configure.

README Basic information and instructions for configuring.

aclocal.m4 Used for building configure from configure.in; not needed for most instal-
lations.

bin Home for executable files like mpirun and mpiman.

ccbugs Directory for programs that test the C compiler during configuration, to make sure
that it will be able to compile the system.

configure The script that you run to create Makefiles throughout the system.
configure.in Input to autoconf that produces configure.
doc Assorted documentation, including this guide.

examples Directory containing further directories of example MPI programs. Of particular
note are basic, with a few small examples to try first, test, with a test suite for
exercising mpich, and perftest, containing benchmarking code.

include The include libraries, both user and system.
installtest A place to test the installation script.

lib The machine-dependent libraries, after they are built. Subdirectories are maintained
for each version of the system that is built, so this same tree can be host for multiple
installations. Machine-dependent scripts such as mpirun and mpireconfig are also
kept here.

man Man pages for MPI, MPE, and internal routines.

mpe The source code for the MPE extensions for logging and X graphics. The contrib
directory contains examples. Best are the mandel and mastermind subdirectories.

mpid The source code for the various “devices” that customize mpich for a particular
machine, operating system, and environment.

profiling The profiling subsystem, including a system for automatically generating the
“wrappers” for the MPI profiling interface.

ptx_ifile A file needed by the Sequent Symmetry running the PTX operating system.
ref Postscript versions of the reference manuals.

src The source code for the portable part of mpich. There are subdirectories for the various
parts of the MPI specification.

util Utility programs and files.

If you have problems, check the MPICH home page on the Web at
http://www.mcs.anl.gov/Projects/mpi/mpich. This page has pointers to lists of known
bugs and patchfiles. If you don’t find what you need here, send mail to
mpi-bugs@mcs.anl.gov.

3 Documentation

This distribution of mpich comes with complete man pages for the MPI routines, the MPE
extensions, and the ADI (Abstract Device Interface) routines. The command mpiman in
mpich/bin is a good interface to the man pages.! The mpich/ref directory contains print-
able versions of the manuals for MPI and the ADI, in compressed PostScript form.

4 Configuring mpich

The next step is to configure mpich for your particular computing environment. mpich can
be built for a variety of parallel computers and also for networks of workstations. Parallel
computers supported include the IBM SP1 and SP2 (using various communication options),
the TMC CM-5, the Intel Paragon, IPSC860, and Touchstone Delta, the Ncube Ncube2, the
Meiko CS-2, the Kendall Square KSR-1 and KSR-2, Convex Exemplar, and IBM, SGI and
Sun multiprocessors. Workstations supported are the Sund family, Hewlett-Packard, DEC
3000 and Alpha, IBM RS/6000 family, and SGI. Also supported are Intel x86-based PC
clones running the LINUX or FreeBSD operating systems. New ports are always pending.

Configuration of mpich is done with the configure script contained in the top-level
directory. This script is automatically generated by the Gnu autoconf program from the
file configure.in, but you do not need to have autoconf yourself.

The configure script documents itself in the following way. If you type
configure -usage

you will get the following.

Configuring with args -usage

Configuring MPICH Version 1.0.13.

Usage: /home/MPI/mpich/configure -arch=ARCH_TYPE -comm=COMM_TYPE -device=DEVICE
[-prefix=INSTALL_DIR] [-c++[=C++_COMPILER]]
[-cc=C_COMPILER] [-fc=FORTRAN_COMPILER]
[-clinker=C_LINKER] [-flinker=FORTRAN_LINKER]
[-mpe] [-nompe] [-nof77] [-f90nag] [-opt=0PTFLAGS]
[-make=MAKEPGM]
[-cflags=CFLAGS] [-fflags=FFLAGS]
[-optcc=C_OPTFLAGS] [-optf77=F77_0PTFLAGS]
[-1ib=LIBRARY] [-mpilibname=MPINAME]
[-no_mpegraphics] [-no_short_longs] [-memdebug]
[-x11_1ib=X11LIB] [-x11_inc=X11INC]
[-mpedbg] [-nompedbg] [-cross] [-devdebug] [-nodevdebug]
[-debug] [-nodebug]
[-var_pkt] [-pkt_size=LENGTH] [-adi_collective]
[-adi_coll_world]
[-wish=WISH] [-tcldir=TCLDIR] [-tkdir=TKDIR]

!The mpiman command is created by the configure process described later.

where
ARCH_TYPE
COMM_TYPE
DEVICE
INSTALL_DIR

C++_COMPILER =

[-fortnames=FORTRANNAMES]
[-ar_nolocal] [-automountfix=AUTOMOUNTFIX]
[-noranlib] [-rsh=RSHCOMMAND] [-rshnol]

the type of machine that MPI is to be configured for
communications layer or option to be used
communications device to be used

directory where MPI will be installed (optional)
default is to use g++ (optional)

OPTFLAGS = optimization flags to give the compilers (e.g. -g)

CFLAGS = flags to give C compiler

FFLAGS = flags to give Fortran compiler

MAKEPGM = version of make to use

LENGTH = Length of message at which ADI switches from short
to long message protocol

WISH = Name of tcl/tk wish executable. Configure will attempt
to find a version of wish for you, but if there is
no wish in your path or you need to use a different version,
use this option. Used only for the display tools
(nupshot and upshot). tk 3.x required for nupshot;
tk 3.x or 4.x for upshot.

TCLDIR = Directory containing tcl. Must have lib/libtcl.a and
include/tcl.h . Used only for nupshot.

TKDIR = Directory containing tk 3.3, 3.4, 3.5, or 3.6. Must have
lib/libtk.a and include/tk.h . TUsed only for nupshot.
May be the same as TCLDIR.

FORTRANNAMES = Form of the Fortran names. See below.

X11LIB = Full path name for 1libX1ll.a

X11INC = Full path name for X11.h

AUTOMOUNTFIX = Command to fix automounters

RSHCOMMAND = Command to use for remote shell

MPILIBNAME = Name to use instead of mpi in the name of the MPI
library. If set, 1ibMPILIBNAME will be used instead
or libmpi. This can be used on systems with
several different MPI implementations.

One and only one ’arch’, ’comm’, and ’prefix’ argument should be
provided. ’arch’ MUST be specified before ’comm’.

If ’-c++’ is included as an option, then the C++ interface is also built. By
default, g++ is used as the c++ compiler. THIS IS CURRENTLY UNSUPPORTED.

You can select a different C and Fortran compiler by using the ’-cc’ and ’fc’
switches. The environment variables ’CC’ and ’FC’ can also provide values for
these but their settings may be overridden by the configure script. Using
’-cc=$CC -fc=$FC’ will force configure to use those compilers.

If ’-cross’ is given, configure assumes that you are cross-compiling. If it

is not given, configure expects to be able to run programs. Even if ’-cross’
is not selected, configure will try to determine if you are cross-compiling;
this switch is needed only on systems where attempting to run a cross-compiled
program causes the configure script to hang.

If ’-mpe’ is included as an option, then the MPE ’helper’ libraries will also
be built. ’-nompe’ causes the MPE libraries to not be built. The default is
’-mpe’. If ’-no_mpegraphics’ is used, then the MPE routines that make use of
X11 graphics will NOT be built; this is appropriate for systems that do

not have the X11 include files or that do not support X11 graphics (some
message-passing systems cannot interoperate with X11). The options -xl11_inc
and -x11_1ib may be used to specify the locations of the X11 include files and
libraries in the event that configure cannot find them (they should both be
specified in that case).

The option ’-mpedbg’ enables the ’-mpedbg’ command line switch in MPI
programs. When used with an MPI program, the default error handler (i.e.,
MPI_COMM_WORLD’s error handler) tries to start xterm’s running dbx for each
process that detects an error. This option is intended primarily for
workstation environments but should work on some MPPs (such as IBM SP2).

The option ’-nof77’ prevents the compilation of routines that require a
Fortran compiler. If this option is selected, you may not use the Fortran
interface to MPI.

The option ’-f90nag’ allows you to use the NAG Fortran 90 instead of Fortran
77. This is a preliminary version and is based on the version for NeXTs.

The option ’-opt’ allows you to specify options for the compilers (both C and
Fortran). For example, ’-opt=-0’ chooses optimized code generation on many
systems. ’-optcc’ and ’-optf77’ allow you to specify options for just the C
or Fortran compilers

The option ’-1ib’ allows you to specify the location of a library that may be
needed by a particular device. Most devices do NOT need this option; check
the installation instructions for those that might.

The option ’-make’ may be used to select an alternate make program. For
example, on FreeBSD systems, -make=gnumake may be required because of bugs in
the system make.

The option ’-no_short_longs’ may be used to suppress support for ANSI C types
’long long int’ and ’long double’ when they are the same size as ’long’ and
’double’ respectively. Some systems allow these long ANSI C types, but
generate a warning message when they are used; this option may be used to
suppress these messages (and support for these types).

The option ’-fortnames=FORTRANNAMES’ allows you to specify the form of the

Fortran names. This is used primarily to generate names with and without
trailing underscores for those systems that support both. Possible values are

FORTRANNAMES value if Fortran MPI_SEND looks like
DOUBLEUNDERSCORE mpi_send__

UNDERSCORE mpi_send_

CAPS MPI_SEND

NOUNDERSCORE mpi_send

This option should normally NOT be used; configure determines what the Fortran
compiler generates. This can be used to override that choice.

The option ’-ar_nolocal’ prevents the library archive command from attempting
to use the local directory for temporary space. This option should be used
when (a) there isn’t much space (less than 20 MB) available in the partition
where mpich resides and (b) there is enough space in /tmp (or wherever ar
places temporary files by default).

The option ’-noranlib’ causes the ’ranlib’ step (needed on some systems to
build an object library) to be skipped. This is particularly useful on
systems where ’ranlib’ is optional (allowed but not needed; because it is
allowed, configure chooses to use it just in case) but can fail (some
’ranlib’s are implemented as scripts using ’ar’; if they don’t use the local
directory, they can fail (destroying the library in the process) if the
temporary directory (usually ’/tmp’) does not have enough space. This has
occurred on some 0SF systems.

The option ’-memdebug’ enables extensive internal memory debugging code. This
should be used only if you are trying to find a memory problem (it can be used
to help find memory problems in user code as well).

The option ’-rsh’ allows you to select an alternative remote shell command (by
default, configure will use ’rsh’ or ’remsh’ from your ’PATH’). If your
remote shell command does not support the ’-1’ option (some AFS versions of
’rsh’ have this bug), also give the option ’-rshnol’. These options are
useful only when building a network version of MPICH (e.g., ’-device=ch_p4’ or
’-device=ch_tcp’).

Special Tuning Options:

There are a number of options for tuning the behavoir of the ADI (Abstract
Device Interface), which is the low-level message-passing interface. These
should NOT be used unless you are sure you know what you are doing.

The option ’-nodevdebug’ disables the debugging code in the MPI ADI code.

This should be used only when you are sure that everything is working correct-
ly. (This option is also present to remind benchmarkers that the low-

level code by default may contain debugging code.) Note also that some of the
device code (in mpid/*) has had the debugging code removed from the source
code. ’-devdebug’ turns on the debugging code. ’-nodevdebug’ is the default.

The option ’-var_pkt’ allows you to set the message size at which MPICH
changes from its short to long message protocol.

The option ’-pkt_size=LENGTH’ allows you to choose the message length at which
the ADI (Abstract Device Interface) switches from its short to long message
format. LENGTH must be positive.

The option ’-adi_collective’ allows the ADI to provide some collective
operations in addition to the basic point-to-point operations. Currently,
most systems do not support this option (it is ignored) and on the others it
has not been extensively tested. The option ’-adi_coll_world’ asks the ADI to
try to use any collective operations that are supported only on the
MPI_COMM_WORLD communicator (and any communicator with a similiar group).

This is also untested.

Sample Configure Usage:

To make for running on Sun4’s running Sun0S with ch_p4 as the device,
and with the installation directory equal to the current directory:

./configure -device=ch_p4 -arch=sun4
make

Known devices are chameleon,

ch_nx (native Intel NX calls),

ch_mpl (native IBM EUI or MPL calls),

ch_nc (native nCUBE calls, requires -arch=ncube),
ch_cmmd (native TMC CM-5 CMMD calls),

ch_p4 (p4)

ch_nexus (Nexus)

ch_meiko (for Meiko CS2, using NX compatibility library),

ch_shmem (for shared memory systems, such as SMPs),

ch_lfshmem(for shared memory systems, such as SMPs; uses lock-free
message buffers),

ch_cenju3 (native NEC Cenju-3 calls),

meiko (for Meiko CS2, using elan tport library), and
nx (for Intel Paragon),
t3d (for the Cray T3D, using Cray shmem library).

Known architectures include (case is important)
sun4 (SUN 0S 4.x)
solaris (Solaris)
solaris86 (Solaris on Intel platforms)

hpux (HP UX)
rs6000 (AIX for IBM RS6000)
sgi (Silicon Graphics IRIX 4.x, 5.x or 6.x)

sgib (Silicon Graphics IRIX 5.x on R4400’s, for the MESHINE)

IRIX (synonym for sgi)
IRIX64 (IRIX with 64bit objects)
alpha (DEC alpha)

intelnx (Intel i860 or Intel Delta)
paragon (Intel Paragon)

meiko (Meiko CS2)

CRAY (CRAY XMP, YMP, C90, J90, T90)
cray_t3d (CRAY T3D)

freebsd (PC clones running FreeBSD)

LINUX (PC clones running LINUX)

ksr (Kendall Square KSR1 and KSR2)

EWS_UX_V (NEC EWS4800/360AD Series workstation. Untested.)
UXPM (UXP/M. Untested.)

uxpv (uxp/v. Untested.)

SX_4_floatO

(NEC SX-4; Floating point format floatO
Conforms IEEE 754 standard.

C: sizeof (int) = 4; sizeof (float) = 4
FORTRAN: sizeof (INTEGER) = 4; sizeof (REAL) = 4)
SX_4_floatl
(NEC SX-4; Floating point format floatl
IBM floating point format.
C: sizeof (int) = 4; sizeof (float) = 4
FORTRAN: sizeof (INTEGER) = 4; sizeof (REAL) = 4)
SX_4_float2
(NEC SX-4; Floating point format float2
CRAY floating point format.
C: sizeof (int) = 4; sizeof (float) = 8
FORTRAN: sizeof (INTEGER) = 8; sizeof (REAL) = 8)
111 WARNING !'!! This version will not run

together with FORTRAN routines.
sizeof (INTEGER) != sizeof (int)
SX_4_float2_int64
(NEC SX-4; Floating point format float2 and
64-bit int’s)
C: sizeof (int) = 8; sizeof (float)
FORTRAN: sizeof (INTEGER) 8; sizeof (REAL)

1}
[e¢]

8)

Special notes:

For SGI (-arch=IRIX) multiprocessors running the ch_p4 device, use -comm=ch_p4
to disable the use of the shared-memory p4 communication device, and
-comm=shared to enable the shared-memory p4 communication device. The default

is to enable the shared-memory communication device.

Others may be recognized.

Normally, you should use configure with as few arguments as you can. For example,
setting the C compiler with -cc=xxx may require also setting -cflags=yyy; configure will
(usually) choose both the compiler and flags appropriately.

mpich is implemented using an abstract device specification (ADI), described in [3].
In some environments, this abstract device is configured to be the native communication
subsystem of the machine. This is done with the device argument to configure. For the
rest of the environments, a generic communication device is constructed using p4 [1, 2] and
that is used as the instantiation of the ADI. In these cases, use ch_p4 as the device.

A new device named ch_nexus and based on the Nexus run-time system has been made
available recently. Like p4, Nexus is able to use multimethod communication on many plat-
forms. For example, the IBM SPx binary can communicate via MPL or TCP depending on
which node it is communicating with. See http://www.mcs.anl.gov/people/geisler/projects/
newmpi.html for more details.

The ARCH_TYPE specifies what kind of processor the compilations will take place on.
Valid ones are listed above. For the IBM SP1 and SP2, the architecture type is rs6000. If
the type is not given, configure will attempt to determine it.

Some machines have multiple communication options, which are specified with the comm
argument. Currently, only the ch_p4 device makes use of this. By selecting -comm=shared,
a p4 device that permits the use of both shared memory and IP/TCP is built. This is
particularly useful on clusters of symmetric multiprocessors.

Some sample invocations of configure are shown below. In most cases, you may wish
to add the argument -mpe to the configure command; this makes the MPE extensions
available to your users.

First, for massively parallel processors (MPPs) and multiprocessors:

Convex Exemplar For a Convex Exemplar, please get the official version from Con-
vex/HP. This is based on mpich, but has been tuned for better performance on the
Exemplar. If for some reason you wish to use the shared-memory version of mpich on
the Convex, use

configure -device=ch_shmem -arch=hpux

Cray multiprocessor (not a CRAY T3D but, for example, a 4-processor Cray YMP or
C90)

configure -device=ch_p4 -arch=CRAY
Cray t3d (assuming you are logged into the YMP front end).
configure -device=t3d -arch=cray_t3d

Intel Paragon configure -device=nx -arch=paragon

IBM SP2 (using the high-performance switch for communication)

configure -device=ch_mpl -arch=rs6000

10

To use this, you must have POE installed.
Meiko CS-2 configure -device=ch_meiko -arch=meiko

SGI multiprocessors configure -device=ch_shmem

See the comments under SGI workstations for different 32- and 64-bit options.
For networks of workstations (can interoperate with other types of workstations),
DEC Alpha To get the full advantages of ANSI C, you may need to add -cflags="-std".

For strict ANSI C, use -cflags="-std1".

IBM RS6000 In order to get the advantages of ANSI C, you may need to add
-cflags="-qlanglvl=ansi". The mpich code uses __STDC__ to check for the pres-
ence of ANSI C features; the IBM RS/6000 compilers do not define this by default.

SGI configure -device=ch_p4

Some SGI systems support both 32- and 64-bit pointers (addresses). mpich uses the
architecture IRIX to refer to 32-bit systems and IRIX64 for 64-bit systems. You can
use —arch=IRIX or ~arch=IRIX64 to force a particular system. If you need to generate
a particular version that corresponds to the =32, -n32, or -64 compiler/linker options
on SGI, use the architectures TRIX32, IRIXN32, or IRIX64, respectively, instead of
sgi.

SGI multiprocessor (such as an Onyx, Challenge, or Power Challenge), using the shared
memory for fast message passing

configure -device=ch_p4 -comm=shared

Use —arch=IRIX to force 32-bit pointers and -arch=IRIX64 to force 64-bit pointers.

Sun SunOS including the mpe libraries (See the users guide [5]:
configure -device=ch_p4 -arch=sun4 -mpe

Sun Solaris configure -device=ch_p4 -arch=solaris -mpe
DEC Alpha configure -device=ch_p4 -arch=alpha

FreeBSD Ftor a network of PC’s running the FreeBSD version of Unix:
configure -device=ch_p4 -arch=freebsd

Nexus device For a machine using the Nexus device, change the device in the above
examples to ch_nexus. The Nexus device requires an ANSI C compiler, because
the Nexus header files use the function prototypes. If the default compiler does not
support function prototypes (assuming ansicc is your compiler), add -cc=ansicc to
the configure command line. Remember to point this at the correct compiler for your
message-passing system (e.g., mpcc for the SP or icc for the Paragon).

11

HP HPUX For anetwork of HP’s, including the mpe library but leaving out of it the MPE
X graphics routines:

configure -device=ch_p4 -arch=hpux -mpe -no_mpegraphics

Fujitsu For a network of Fujitsu M780s running UXP /M, the following options have been
tested:

setenv FC frt

configure -arch=UXPM -device=ch_p4 -fflags="-0e,-Uep -Eml -Aabe" \
-mpe -mpedbg -prefix=/usr/local/mpi \
-tcldir=/usr/local -tkdir=/usr/local -wish=/usr/local/bin/wish

mpich can be run on a heterogeneous network of workstations of various kinds. For sim-
ple collections of workstations, the mpirun command can be used; more complex collections
of heterogeneous machines require a p4 “procgroup file” (for the ch_p4 device) or a “startup
file” (for the ch_nexus device). The format of these files is described in Section 6.1.

4.1 Building a Production mpich

By default, configure sets up mpich to be compiled without optimization and with ad-
ditional code to help in identifying problems and behavior of the mpich implementation.
Once mpich passes the tests (see Section 7), you may wish to rebuild mpich without the
debugging code. This will produce significantly smaller libraries and slightly faster code.
To do this, add the options

-opt=-0 -nodevdebug

to the configure line, and rerun make. You may also include multiple optimization options
by enclosing them in quotes:

-opt="-0 -qarch=pwr2"

4.2 What If There Is No Fortran Compiler?

The configure program should discover that there is no Fortran compiler. You can force
configure to not build the Fortran parts of the code with the option -nof77. In this case,
only the C programs will be built and tested.

4.3 Special Issues for Heterogeneous Networks

When building mpich for a heterogeneous collection of workstations, you may wish to con-
figure with the option -no_short_longs. This indicates to mpich that it should not provide
support for the C type long double. This can improve performance between systems that
have the same datatype lengths for all other types (some Intel x86 machines have 12-byte
long doubles; many other systems use either 8- or 16-byte long doubles).

12

5 Compiling mpich
Once configure has determined the features of your system, all we have to do now is
make

This will clean all the directories of previous object files (if any), compile both profiling and
nonprofiling versions of the source code, build all necessary libraries, and link both a sample
Fortran program and a sample C program as a test that everything is working. If anything
goes wrong, check Section 13 to see whether anything is said there about your problem. If
not, follow the directions in Section 13.1 for submitting a bug report. To simplify checking
for problems, use

make >& make.log &

Specific (nondefault) targets can also be made. See the Makefile to see what they are.

After this make is run, the size of the distribution will be about 20 megabytes (depending
on the particular machine it is being compiled for), before any of the examples or the ex-
tensive test library is built. The Makefiles are built for the various example subdirectories,
but the example programs have to be made by hand.

5.1 Getting tcl, tk, and wish

The software packages tcl, tk, and wish are available by anonymous ftp from ftp.smli.com
in the directory /pub/tcl. They are needed only for the upshot and nupshot programs;
you do not need them in order to install MPIL.

You should get tcl7.3.tar.Z and tk3.6.tar.Z (and patch tk3.6pl.patch). Later
versions of both tcl and tk are incompatible with these and do not work with nupshot. The
upshot program has been modified to work with either tk 3.6 or tk4.0.

It is necessary that the wish program be accessible to users; the other parts of tcl and
tk do not need to be installed (but make sure that everything that wish itself needs is
installed).

5.2 Building Multiple Devices or Architectures

When building more than one version of mpich, it is important to use the versions of the
programs mpirun, etc., from the library directory, not mpich/bin.

6 Running an MPI Program

In order to make running programs on parallel machines nearly as portable as writing
them, the environment distributed with mpich contains a script for doing so. It is the

13

mpirun command, found in the mpich/bin directory. Several of the examples directories
already have symbolic links to this command, but eventually you might wish to add it to
your path, with (assuming your shell is the C shell)

set path=($path /home/me/mpich/bin)

More details on mpirun can be found in Section 11.2. If you are going to run on a network of
workstations, you will need a machines.xxxx file in mpich/util/machines; see Section 6.1
for details. Systems that use various kinds of filesystem automounters may need to make
small changes to these programs; these are detailed in Section 6.1.1.

Some simple MPI programs will have been built during the compilation process. They
are in the directory mpich/examples/basic and contain a C and a Fortran program for
estimating 7. Change to that directory, and do

mpirun -np 4 cpi
to run the C version, and
mpirun -np 4 fpi

to run the Fortran version. At this point, you have minimally tested your installation of
mpich. You might also wish to check the performance of MPI on your system. You can do a
crude check by running the program systest, also found in the examples/basic directory.
To try it, do

make systest
mpirun -np 2 systest

For a more precise benchmark, see Section 10.

Another program in the examples/basic subdirectory is cpilog. This program uses
some of the routines from the MPE library; you must have configured with the -mpe option.
If you make it and run it, it will produce a simple log file that can be viewed with the program
analysis tool upshot. To do so, you may need to build upshot with

make upshot

in the top level mpich directory. Note that upshot requires the tk shell wish. To use upshot
to view a log file, do

make cpilog
mpirun -np 4 cpilog

upshot cpilog.log

The log file produced by cpilog is not very interesting, since cpi is such a simple program.
Many interesting logfiles can be found in the profiling/upshot/logfiles subdirectory.

14

The file cpilog.c demonstrates how to instrument your own code for producing such logs.
The users guide [5] describes how to link with a version of mpich that produces them
automatically. For a short description of the programs in the examples/basic directory,
see the README file there. The logging routines are part of mpe, so be sure that your
configuration has been done with the -mpe option.

6.1 Special Considerations for Running on a Network of Workstations

To run on a network of workstations, you must specify in some way the host names of the
machines that you wish to run on. This process can be done in several ways. These are
described in detail in the users guide. We give a shorter version here.

The easiest way is to edit the file mpich/util/machines/machines.xxxx, to contain
names of machines of architecture xxxx. The xxxx matches the arch given when mpich was
configured. Then whenever mpirun is executed, the required number of hosts will be selcted
from this file for the run. (There is no fancy scheduling; the hosts are selected starting from
the top.) To run all your MPI processes on a single workstation, just make all the lines in
the file the same. A sample machines.sun4 file might look like

mercury
venus
earth
mars
earth
mars

To run the test suite in examples/test, you need a machines file with at least five lines in
it. This is for homogeneous networks. Heterogeneous networks are discussed in the users
guide.

6.1.1 Dealing with Automounters

Automounters are programs that dynamically make file systems available when needed.
While very convenient, many automounters are unable to recognize the file system names
that the automounter itself generates. For example, if a user accesses a file /home/me,
the automounter may discover that it needs to mount this file system, and does so in
/tmp_mnt/home/me. Unfortunately, if the automounter on a different system is presented
with /tmp_mnt/home/me instead of /home/me, it may not be able to find the file system.
This would not be such a problem if commands like pwd returned /home/me instead of
/tmp_mnt/home/me; unfortunately, it is all too easy to get a path that the automounter
should, but does not, recognize.

To deal with this problem, configure allows you to specify a filter program when you
configure with the option -automountfix=PROGRAM, where PROGRAM is a filter that reads
a file path from standard input, makes any changes necessary, and writes the output to
standard output. By default, the value of PROGRAM is

sed -e s@/tmp_mnt/@/0g

15

This uses the sed command to strip the string /tmp_mnt from the file name. Simple sed
scripts like this may be used as long as they do not involve quotes (single or double) or use
% (these will interfere with the shell commands in configure that do the replacements). If
you need more complex processing, use a separate shell script or program.

As another example, some systems will generate paths like
/a/thishost/root/home/username/. . ..
which are valid only on the machine thishost, but also have paths of the form
/u/home/username/. ...
that are valid everywhere. For this case, the configure option
-automountfix=’"sed -e s@/a/.*/home@/u/home@g’

will make sure that mpirun gets the proper filename.

6.1.2 Faster Job Startup

When using the ch_p4 or ch_nexus devices, it is possible to speed the process of starting
jobs by using the secure server. The secure server is a program that runs on the machines
listed in the machines.ARCH file and that allows programs to start faster. There are two
ways to install this program: so that only one user may use it and so all users may use it.
No special privileges are required to install the secure server for a single user’s use.

To use the secure server, follow these steps:

1. Choose a port. This is a number that you will use to identify the secure server (different
port numbers may be used to allow multiple secure servers to operate). A good choice
is a number over 1000. If you pick a number that is already being used, the server
will exit, and you will have to pick another number. On many systems, you can use
the rpcinfo command to find out which ports are in use (or reserved). For example,
to find the ports in use on host mysun, try

rpcinfo -p mysun
2. If using the ch_p4 device, build the secure server. From the top-level directory, do
make serv_p4

At the end of this step, the executable for the secure server is in the same directory
as the MPIT libraries.

3. Start the secure server. The script bin/chp4_servs

bin/chp4_servs -port=n -arch=$ARCH

16

can be used to start the secure servers. This makes use of the remote shell command
(rsh or remsh) to start the servers; if you cannot use the remote shell command, you
will need to log into each system on which you want to start the secure server and
start the server manually. The command to start an individual server using port 2345
is

serv_p4 -o -p 2345 &

For example, if you had chosen a port number of 2345 and were using sun4s, you
would give the command

bin/chp4_servs -port=2345 -arch=sun4

The server will keep a log of its activities in a file with the name P4Server.Log.xxxx
in the current directory, where xxxx is the process id of the process that started the
server (note that the server may be running as a child of that initial process).

4. To make use of the secure servers using the ch_p4 device, you must inform mpirun of
the port number. You can do this in two ways. The first is to give the -p4ssport n
option to mpirun. For example, if the port is 2345 and you wish to run cpi on four
processors, use

mpirun -np 4 -p4ssport 2345 cpi

The other way to inform mpirun of the secure server is to use the environment variables
MPI_USEP4SSPORT and MPI_P4SSPORT. In the C-shell, you can set these with

setenv MPI_USEP4SSPORT yes
setenv MPI_P4SSPORT 2345

The value of MPI_P4SSPORT must be the port with which you started the secure servers.
When these environment variables are set, no extra options are needed with mpirun.

5. If using the ch_nexus device, find the Nexus secure server in the Nexus directory, for
example, /usr/local/nexus/bin/sserver.

6. Start the Nexus secure server on each machine. The command to start an individual
server using port 2345 is

ssserver -d -p 2345 &

7. The ch_nexus device requires that you record the port numbers in a resource database
(.rdb) file. The format of the file is

<host> ss_port=<port #>
The -nexusdb flag should be used to tell mpirun the name of the file:

mpirun -nexusdb ports program
Note that when mpich is installed, the secure server and the startup commands are

copied into the library directory so that users may start their own copies of the server. This
is discussed in the users guide.

17

6.1.3 Stopping the Servers

To stop the servers, their processes must be killed. Stopping is easily done with the Scalable
Unix Tools [4] with the command

pfps -all -tn serv_p4 -and -o $LOGNAME -kill INT
Alternately, you can log into each system and execute something like
ps auxww | egrep ’$LOGNAME.*serv_p4’

and then use the kill command on the resulting process number (users of System V-style
ps commands will have to figure out what their particular form of ps needs and adjust the
egrep command accordingly).

An alternative approach is discussed in Section 6.1.4.

6.1.4 Managing the Servers

An experimental perl5 program is provided to help you manage the p4 secure servers. This
program is chkserv, and is in the util directory. You can use this program to check that
your servers are running, start up new servers, or stop servers that are running.

Before using this script, you must edit it. It has sample values for the fields that it will
use. In particular, you should set serv_p4, portnum, and machinelist appropriately; you
may also need to set the first line to your version of perl5.

To check on the status of your servers, use
chkserv -port 2345
To restart any servers that have stopped, use
chkserv -port 2345 -restart
This does not restart servers that are already running; you can use this as a cron job every
morning to make sure that your servers are running. Note that this uses rsh to start the
process on the remote systems; if you can’t use rsh, you’ll need to restart the servers by

hand. In that case, you can use the output from chkserv -port 1234 to see which servers
need to be restarted.

chkserv -port 2345 -kill

This contacts all running servers and tells them to exit. It does not use rsh, and can be
used on any system (it contacts the server and tells it to exit).

This software is experimental. If you have comments or suggestions, please send them
to mpibugs@mcs.anl.gov.

18

6.2 Special Considerations for Running with Shared Memory

When using the ch_shmem or ch_1fshmem devices with System V shared memory, processes
that exit abnormally (e.g., with a segmentation violation) may leave System V semaphores
or shared-memory segments allocated.? Since there are usually a limited number of these
objects, it is important to recover them. The Unix command ipcs can be used to list the
allocated semaphores and shared memory segments, and ipcrm can be used to delete them.
The script bin/cleanipcs can be used to identify and delete all System V IPCs owned by
the calling user; the use is simply

bin/cleanipcs

7 Thorough Testing

The examples/test directory contains subdirectories of small programs that systematically
test a large subset of the MPI functions. The command

make testing
in the mpich/examples/test directory will cause these programs to be compiled, linked,
and executed, and their output to be compared with the expected output. Linking all these
test programs takes up considerable space, so you might wish to do

make clean

in the test directory afterwards. The individual parts of MPI (point-to-point, collective,
topology, etc.) can be tested separately by

make testing

in the separate subdirectories for examples/test.

If your disk space is limited, consider either running with
make testing TESTARGS=-small
or going to each directory and executing
./runtests -small

With the -small switch, each executable is built, run, and deleted before the next test
program is built.

If you have a problem, first check the troubleshooting guides and the lists of known
problems. If you still need help, send detailed information to mpi-bugs@mcs.anl.gov.

2The System V IPC (interprocess communication) mechanisms do not have a “delete on unreferenced”
attribute.

19

8 Installing mpich for Others to Use

This step is optional. Once you have tested all parts of the MPI distribution (including the
tools, particularly upshot and/or nupshot), you can install mpich into a publicly available
directory. To install the libraries and include files in a publicly available place, choose a
directory, such as fusr/local/mpi, change to the top-level mpich directory, and do

make install PREFIX=/usr/local/mpi

The man pages will have been copied with the installation, so you might wish to add
/usr/local/mpi/man to the default system MANPATH. The man pages can be conveniently
browsed with the mpiman command, found in the mpich/bin directory.

A good way to handle multiple releases of mpich is to install them into directories
whose names include the version number and then set a link from mpi to that directory.
For example, if the current version is 1.0.13, the installation commands to install into
/usr/local are

make install PREFIX=/usr/local/mpi-1.0.13
rm /usr/local/mpi
1n -s /usr/local/mpi-1.0.13 /usr/local/mpi

The script util/mpiinstall provides more control over the installation of mpich (in
fact, make install just runs this script). For example, you can change the protection
of the files when they are installed with the options -mode=nnnn (for regular files) and
-xmode=nnnn (for executables and directories). You can set the directory into which the
man pages will be placed with -manpath=<path>. The option -help shows the full set of
options for mpiinstall.

Installing nupshot can sometimes be troublesome. You can use the switch -nonupshot
to mpiinstall to not install nupshot; alternately, you can use the switch -cpnuphost to
install the copy in mpich/profiling/nupshot. Normally, mpiinstall builds a new version
of nupshot to ensure that all of the paths are correct (nupshot needs to find files where it
is installed). If you need to manually build nupshot for installation, the -cpnupshot switch
will allow you to install that version.

If you are supporting multiple devices on a single platform (for example, ch_p4 and
ch_shmem), you should build one and install it in the regular way, then build the second
and install it with mpiinstall -libonly. In this case, make sure that your users use the
programs in the library directory rather than the bin directory.

8.1 User Commands

The commands mpirun, mpicc, mpif77, mpiman, and mpireconfig should be in the user’s
search path. Note that if several architectures and/or mpich devices are supported, it is
important that the correct directory be added to the user’s path. For convenience, these are
in both mpich/bin and mpich/1lib/<arch>/<device>;if there is any chance that multiple
architectures or devices are used, the second form should be used.

20

8.2 Installing Documentation

The mpich implementation comes with several kinds of documentation. Installers are en-
couraged to provide site-specific information, such as the location of the installation (par-
ticularly if it is not in /usr/local/mpi).

8.2.1 Man Pages

A complete set of Unix man pages for the mpich implementation are in mpich/man.
man/man3 contains the MPI routines; man/man4 contains the MPE routines and mpirun,
and man/man5 contains the MPID routines (these are for the low-level part of the mpich
implementation, are are not of interest to users). The command mpich/bin/mpiman is a
script that runs xman on these man pages.

8.2.2 Web Versions of Man Pages

Web (HTML) versions are available from ftp://info.mcs.anl.gov/pub/mpi/manwww.tar.Z.
They are available at http://www.mcs.anl.gov/mpi/www. A sample Web page is shown
below and is also available in mpich/util/mpichsite.html

<TITLE>Using MPICH at Argonne</TITLE>

<H1>Site-specific information on the MPICH implementation of MPI</H1>

<H2>Location of libraries</H2>

The MPICH implementation is located in <TT>/usr/local/mpi/lib</TT>; the
libraries are in

<DL>

<DT> <TT>1ib/sun4/ch_p4</TT>

<DD> for Sun4

<DT> <TT>1ib/rs6000/ch_mpl</TT>
<DD> for the SPx

<DT> <TT>1ib/IRIX/ch_shmem</TT>
<DD> for the SGI system
</DL>

<H2>Location of programs</H2>
Programs are located in the same directory as the libraries

<H2>Documentation</H2>

The command <TT>/usr/local/mpi/bin/mpiman</TT> provides man pages with xman.
The man pages

are also available. The

MPI
Standard Version 1.1 is available in hypertext form.

21

<H2>Examples</H2>

A simple example in C and Fortran is in <TT>/usr/local/mpi/examples</TT>.
More examples may be found in the MPICH source tree, located at
<TT>/home/MPI/mpich/examples</TT>.

8.2.3 Examples

Users often prefer working from example Makefiles and programs. The directory that is
installed in the examples directory contains a C and Fortran version of the ‘pi’ program,
along with a Makefile.in. Users may be interested in some of the examples that are in
the source tree, also in the examples directory.

9 Internationalization

mpich has support for providing error messages in different languages. This makes use of
the X/Open message catalog services, which are a standard way of providing multilanguage
support. This multilanguage support is often called NLS, for National Language Support.
mpich comes with error messages in English; additional languages will be provided as we get
the translations (if you wish to provide one, please send mail to mpi-bugs@mcs.anl.gov).
More precisely, mpich uses an English version that uses the ISO Latin-1 character set
(ISO8859-1). We expect to provide other versions that also use the Latin-1 character set,
subject to getting translations of the messages.

To create a new message catalog, copy the file mpich.En_US.msg to a file
mpich.mylanguage.msg and translate the entries. The value of mylanguage should match
the ones used for your system, for example, mpich.De_DE.msg for German. Many systems
put their NLS files in /usr/1ib/nls/msg; you can also check the value of the environment
variable NLSPATH on your system. Note that some systems provide the routines and pro-
grams to support NLS, but do not make use of it and do not provide an initial NLSPATH
value.

For emacs users, check the emacs info under “European Display”. The commands

M-x standard-display-european
M-x iso-accents-mode

can be used to input most Furopean languages. You can also load iso-transl and use C-x
8 to compose characters (this sets the high bit in the character). mpich currently does not
support languages that require multibyte character sets (such as Japanese). However, the
only changes needed are in the file src/env/errmsg.c; if you are interested in developing
a multibyte character set version, please let us know.

By default, mpich uses the value of NLSPATH to find the message catalogs. If this fails, it
tries MPICHNLSPATH, and if that fails, it uses English language versions that are coded into
the library.

22

The catalogs are not, however, installed into these directories. Instead, you will find
them in the library directory for a particular architecture; for example, mpich/1ib/rs6000.

10 Benchmarking mpich

The mpich/examples/perftest directory contains a sophisticated tool for measuring la-
tency and bandwidth for mpich on your system. To run it, first make sure that mpich was
configured with the -mpe option. Then go to mpich/examples/perftest and do

make
mpirun -np 2 mpptest -gnuplot > out.gpl

The file out.gpl will then contain the necessary gnuplot commands. The file mppout.gpl
will contain the data. To view the data with gnuplot, use

gnuplot out.gpl
or use
load ’out.gpl’

from within gnuplot. Depending on your environment and version of gnuplot, you may
need to start gnuplot first and issue the command set terminal x11 before executing
load ’out.gpl’.

The programsmpptest and goptest have a wide variety of capabilities; the option -help
will list them. For example, mpptest can automatically pick message lengths to discover
any sudden changes in behavior and can investigate the ability to overlap communication
with computation. These programs are written using MPI and may be used with any MPI
implementation, not just mpich.

11 The mpich Programming Environment

11.1 Introduction

The MPI standard specifies nothing outside of MPI programs, not even how they will be
started. mpich supplies a number useful tools for managing MPI programs, including

1. mpirun, a portable startup command, so that MPI programs can be started the same
way in many different environments,

2. mpicc and mpif77, easy ways to compile and link MPI programs.

3. mpireconfig, a way to create Makefiles from Makefile.in templates

23

4. mpe, a library of useful routines that work will with MPI. Curently this library includes
both routines for producing log files of time-stamped events and a simple parallel X
graphics library, routines for providing a sequential section code, and routines to start
a debugger when errors occur.

5. A set of predefined profiling libraries. The MPI standard specifies a mechanism
whereby the user may “wrap” any collection of MPI functions with code of his own,
without accessing the MPI implementation source code. We supply tools for con-
structing such a profiling version of the MPI library with a minimum of effort, as
well as three preconstructed sets of wrappers, for accumulating time spent in MPI
routines, for preparing log files, and for program animation.

6. upshot, a tool for examining log files produced by the mpe logging functions or by the
automatic logging in the logging profiling library.

7. nupshot, an experimental, faster version of upshot.

11.2 mpirun, a Portable Startup Script

Each parallel computing environment provides some mechanism for starting parallel pro-
grams. Unfortunately, these mechanisms are very different from one another. In an effort
to make this aspect of parallel programming portable as well, mpich contains a script called
mpirun. This script is partially customized during the configuration process when mpich is
built. Therefore the actual “source” for mpirunisin the filempirun.sh.inin the mpich/bin
directory. The most common invocation of mpirun just specifies the number of processes
and the program to run:

mpirun -np 4 cpi
The complete list of options for mpirun is obtained by running
mpirun -help

This is the result:
mpirun [mpirun_options...] <progname> [options...]

mpirun_options:
-arch <architecture>
specify the architecture (must have matching machines.<arch>
file in /Net/antireo/antireo9/MPI/mpich/bin/machines) if using the
execer
-h This help
-machine <machine name>
use startup procedure for <machine name>
Currently supported:
chameleon
meiko
paragon

24

p4

spl
ibmspx
anlspx
ksr
sgi_mp
ipsc860
inteldelta
cray_t3d
execer
smp
symm_ptx

-machinefile <machine-file name>
Take the list of possible machines to run on from the
file <machine-file name>. This is a list of all available
machines; use -np <np> to request a specific number of machines.
-np <np>
specify the number of processors to run on
-nolocal
don’t run on the local machine (only works for
p4 and ch_p4 jobs)
-stdin filename
Use filename as the standard input for the program. This
is needed for programs that must be run as batch jobs, such
as some IBM SP systems and Intel Paragons using NQS (see
-paragontype below) .

-t Testing - do not actually run, just print what would be
executed

-v Verbose - throw in some comments

-dbx Start the first process under dbx where possible

-gdb Start the first process under gdb where possible
(on the Meiko, selecting either -dbx or -gdb starts prun
under totalview instead)
-xxgdb Start the first process under xxgdb where possible (-xdbx
does not work)
-tv Start under totalview

Special Options for NEC - CENJU-3:
-batch Excecute program as a batch job (using cjbr)
-stdout filename
Use filename as the standard output for the program.
-stderr filename

Use filename as the standard error for the program.

Special Options for Nexus device:

25

-nexuspg filename
Use the given Nexus startup file instead of creating one.
Overrides -np and -nolocal, selects -leave_pg.

-nexusdb filename
Use the given Nexus resource database.

Special Options for Workstation Clusters:

-e Use execer to start the program on workstation
clusters

-pg Use a procgroup file to start the p4 programs, not execer
(default)

-leave_pg

Don’t delete the P4 procgroup file after running

-p4pg filename
Use the given p4 procgroup file instead of creating one.
Overrides -np and -nolocal, selects -leave_pg.

-tcppg filename
Use the given tcp procgroup file instead of creating one.
Overrides -np and -nolocal, selects -leave_pg.

-p4ssport num
Use the p4 secure server with port number num to start the
programs. If num is O, use the value of the
environment variable MPI_P4SSPORT. Using the server can
speed up process startup. If MPI_USEP4SSPORT as well as
MPI_P4SSPORT are set, then that has the effect of giving
mpirun the -p4ssport O parameters.

Special Options for Batch Environments:

-mvhome Move the executable to the home directory. This
is needed when all file systems are not cross-mounted
Currently only used by anlspx
-mvback files
Move the indicated files back to the current directory.
Needed only when using -mvhome; has no effect otherwise.
-maxtime min
Maximum job run time in minutes. Currently used only
by anlspx. Default value is 15 minutes.
-nopoll Do not use a polling-mode communication.
Available only on IBM SPx.
-mem value
This is the per node memory request (in Mbytes). Needed for some
CM-5s. (Default 32.)

-cpu time

26

This is the the hard cpu limit used for some CM-5s in
minutes. (Default minutes.)

Special Options for IBM SP2:

-cac name
CAC for ANL scheduler. Currently used only by anlspx.
If not provided will choose some valid CAC.

Special Options for Intel Paragon:

-paragontype name
Selects one of default, mkpart, NQS, depending on how you want
to submit jobs to a Paragon.

-paragonname name
Remote shells to name to run the job (using the -sz method) on
a Paragon.

-paragonpn name
Name of partition to run on in a Paragon (using the -pn name
command-line argument)

On exit, mpirun returns a status of zero unless mpirun detected a problem, in
which case it returns a non-zero status (currently, all are one, but this
may change in the future).

Multiple architectures may be handled by giving multiple -arch and -np
arguments. For example, to run a program on 2 sunds and 3 rs6000s, with
the local machine being a sun4, use

/home/MPI/mpich/util/mpirun -arch sun4 -np 2 -arch rs6000 -np 3 program
This assumes that program will run on both architectures. If different
executables are needed, the string ’Ja’ will be replaced with the arch name.
For example, if the programs are program.sun4 and program.rs6000, then the
command is

/home/MPI/mpich/util/mpirun -arch sun4 -np 2 -arch rs6000 -np 3 program.ja

If instead the executables are in different directories; for example,
/tmp/me/sun4 and /tmp/me/rs6000, then the command is

/home/MPI/mpich/util/mpirun -arch sun4 -np 2 -arch rs6000 -np 3 /tmp/me/%a/program
It is important to specify the architecture with -arch BEFORE specifying

the number of processors. Also, the FIRST -arch command must refer to the
processor on which the job will be started. Specifically, if -nolocal is

27

NOT specified, then the first -arch must refer to the processor from which
mpirun is running.

For backward compatibility with earlier versions of mpirun, each of these arguments can
also be used with the prefix mr_, as in

mpirun -mr_np 4 myprog

11.3 The mpicc and mpif77 Commands

The mpich implementation provides two commands for compiling and linking C and Fortran
programs. You may use these commands instead of the Makefile.in versions, particularly
for programs contained in a small number of files. In addition, they have a simple interface
to the profiling and visualization libraries described in [7]. This is a program to compile or
link MPI programs. In addition, the following special options are supported:

-mpilog Build the version that generates MPE log files.
-mpitrace Build the version that generates traces.
-mpianim Build the version that generates real-time animation.

-show Show the commands that would be used without actually running them.
Use this just like the usual C or Fortran compiler, for example,

mpicc -c foo.c
mpif77 -c foo.f

and

mpicc -o foo foo.o
mpif77 -o foo foo.o

Commands for the linker may include additional libraries. For example, to use some routines
from the MPE library, enter

mpicc -o foo foo.o -lmpe
Combining compilation and linking in a single command, as shown here,

mpicc -o foo foo.c
mpif77 -o foo foo.f

may not work on some systems, and is not recommended.

These commands are set up for a specific architecture and mpich device and are located
in the directory that contains the MPI libraries. For example, if the architecture is sun4 and
the device is ch_p4, these commands may be found in /usr/local/mpi/lib/sun4/ch_p4
(assuming that mpich is installed in /usr/local/mpi).

28

11.4 mpireconfig, a Way to Create Makefiles

Much of mpich’s portability is handled throught the careful construction of system-dependent
Makefiles by the configure program. This is fine for installing mpich, but what can you
do when you are building a new application? For simple applications, the mpicc and
mpif77 commands may be the simplest way to build a new application. For more complex
codes, we recommend taking a sample Makefile.in file, for example, in
mpich/examples/test/pt2pt. Modify those parts that are are relevant, such as the EXECS
and specific program targets. To create a Makefile, just execute

mpireconfig Makefile

(mpireconfig is in the same directory as mpirun). This generates a new Makefile from
Makefile.in, with the correct parameters for the mpich that was installed.

11.5 nupshot, a Way to View Logfiles

Nupshot is a newer version of upshot [6] and can display log files created by using either
the -mpilog option to mpicc or mpif77 or through use of the MPE logfile facilities.

12 Automatic Report Generation

We are working on a prototype system for automatically producing a report describing the
installation of MPI on the system you are using. This is done by going to the top-level
directory and doing

configure ... >& config.log
doc/port

Warning: this rebuilds the system, since one of the things the report will contain is the
set of machine-specific parameters used and the total time it take to build it. The reason
for directing the configure output to a file is so that the document generator can include
comments on the configuration itself, such as calling out any problems that configure
noticed.

If the system that you are running on contains all the necessary components for pro-
ducing the report, it will appear in the file doc/docl.tex. This is a LaTeX file and should
be processed in the doc directory:

cd doc
latex docl
bibtex
latex docl
dvips docl

The graphs of performance require gnuplot and are generated as Postscript files.

29

13 Problems

This section describes some commonly encountered problems and their solutions. It also
describes machine-dependent considerations. You should also check the Users Guide, where
problems related to compiling, linking, and running MPI programs (as opposed to building
the mpich implementation) are discussed.

13.1 Submitting Bug Reports

Any problem that you can’t solve by checking this section should be sent to
mpi-bugs@mcs.anl.gov. Please include

o The version of MPICH (e.g., 1.0.13)

¢ The output of running your program with the -mpiversion argument (e.g., mpirun
-np 1 a.out -mpiversion)

e The output of
uname -a
for your system. If you are on an SGI system, also
hinv
If the problem is with a script like configure or mpirun, run the script with the -echo

argument (e.g., mpirun -echo -np 4 a.out)

If you are using a network of workstations, also send the output of bin/tstmachines.
The program tstmachines is discussed in the users guide.

If you have more than one problem, please send them in separate messages; this simplifies
our handling of problem reports.

The rest of this section contains some information on trouble-shooting mpich. Some
of these problems are peculiar to specific environments and give suggested work-arounds.
Each section is organized in question-and-answer format, with questions that relate to more
than one environment (workstation, operating system, etc.) first, followed by questions that
are specific to a particular environment. Problems with workstation clusters are collected
together as well.

13.2 Problems Configuring

13.2.1 General

1. Q: When trying to run configure, | get error messages like

./configure: syntax error at line 20: ‘(’ unexpected
g ¥y P

30

A: You have an obsolete version of the Bourne shell (sh). mpich requires that the
sh shell support shell procedures; this has been standard in most Bourne shells for
years. To fix this, you might consider (a) getting an update from your vendor or (b)
installing one of the many publicly available sh-shell replacements.

2. Q: The configure reports the compiler as being broken, but there is no problem with
the compiler (it runs the test that supposedly failed without trouble).

A: You may be using the Bash shell (/bin/bash) as a replacement for the Bourne
shell (/bin/sh). We have reports that, at least under LINUX, Bash does not properly
handle return codes in expressions. One fix is to use a different shell, such as /bin/ash,
on those systems.

This won’t work on some LINUX systems (every shell is broken). We have reports
that the following will work:

a) In configure, change trap ’rm -f confdefs*’ 0 to
g > g P
trap ’rm -f confdefs*’ 1

(b) After configure finishes, remove the file confdefs.h manually.

3. Q: configure reports errors of the form
checking gnumake... 1: Bad file number

A: Some versions of the Bash shell do not handle output redirection correctly. Either
upgrade your version of Bash or run configure under another shell (such as /bin/sh).
Make sure that the version of sh that you use is not an alias for Bash. configure
tries to detect this situation and will normally issue an error message.

13.2.2 LINUX

1. Q: The configure step issues the message

checking that the compiler £77 runs... no
Fortran compiler returned nonzero return code
Output from test was
f2ctmp_conftest.f:

MAIN main:

A: This is probably caused by a problem in the Fortran compiler in LINUX. The £77
command in LINUX is often a shell script that uses the £2c program to convert the
Fortran program to C and then compile it with the C compiler. In many versions
of LINUX, this script has an error that causes a nonzero return code even when the
compilation is successful.

To fix this problem, you need a corrected £77 script. If you can edit the script yourself,
change the last 3 lines from

case $cOPT in 2) $CC $G -o $0UTF $0FILES -1f2c -1m;; esac

rc=$7
exit $rc

31

to

case $cOPT in 2) $CC $G -o $0UTF $0FILES -1f2c -1m;; esac
rc=$7

trap O

exit $rc

2. Q: The link test fails on LINUX with messages like

overtake.o(.text+0x59): undefined reference to ‘MPI_COMM_WORLD’
overtake.o(.text+0x81): undefined reference to ‘MPI_COMM_WORLD’

A: This is probably caused by a problem in the Fortran compiler in LINUX. The £77
command in LINUX is often a shell script that uses the £2c program to convert the
Fortran program to C and then compile it with the C compiler. In many versions
of LINUX, this script has an error that causes a nonzero return code even when the
compilation is successful.

To fix this problem, you need a corrected £77 script. If you can edit the script yourself,
change the last 3 lines from

case $cOPT in 2) $CC $G -o $0UTF $0FILES -1f2c -1m;; esac
rc=$7
exit $rc

to

case $cOPT in 2) $CC $G -o $0UTF $0FILES -1f2c -1m;; esac
rc=$7

trap O

exit $rc

13.3 Problems Building mpich
13.3.1 General
1. Q: When running make on mpich, I get this error:

ar: write error: No such file or directory
x Error code 1

I've looked, and all the files are accessible and have the proper permissions.

A: Check the amount of space in /tmp. This error is sometimes generated when
there is insufficient space in /tmp to copy the archive (this is a step that ar takes
when updating a library). The command df /tmp will show you how much space is
available. Try to ensure that at least twice the size of the library is available.

32

2.

Q: When running make on mpich, I get errors when executing ranlib.

A: Many systems implement ranlib with the ar command, and they use the /tmp
directory by default because it seems obvious that using /tmp would be faster (/tmp is
often a local disk). Unfortunately, a large number of systems have ridiculously small
/tmp partitions, and making any use of /tmp is very risky. In some cases, the ar
commands used by mpich will succeed because they use the 1 option—this forces ar
to use the local directory instead of /tmp. The ranlib command, on the other hand,
may use /tmp and cannot be fixed.

In some cases, you will find that the ranlib command is unnecessary. In these cases,
you can reconfigure with -noranlib. If you must use ranlib, either reduce the space
used in /tmp or increase the size of the /tmp partition (your system administrator will
need to do this). There should be at least 20-30 MBytes free in /tmp.

13.3.2 Workstation Networks

1.

Q: When building mpich, the make fails with errors like this:

making p4 in directory lib
make 1libp4.a

cc -Aa -g -I../include -I../../../../include -c p4_globals.c

cc: "/usr/include/netinet/in.h", line 69: error 1000: Unexpected symbol: "u_long".
cc: "/usr/include/netinet/in.h", line 127: error 1000: Unexpected symbol: "u_short".
etc.

A: Check to see whether cc is aliased (in C shell, do alias cc). If it is, either unalias
it or set the environment variable CC to the full path for the compiler. To get the full
path, do

unalias cc
setenv CC ‘which ccf

and then reconfigure.

. Q: When building the ch_p4 device, [get errors of the form

making p4 in directory 1lib

make 1libp4.a
cc -I../include -I../../../../include -c pé4_globals.c
cc -I../include -I../../../../include -c p4_MD.c
cc -I../include -I../../../../include -c péd_error.c
cc-142 cc: WARNING File = p4_error.c, Line = 152
The number of old style and prototype parameters does not agree.
cc-142 cc: WARNING File = p4_error.c, Line = 162
The number of old style and prototype parameters does not agree.
cc-142 cc: WARNING File = p4_error.c, Line = 169
The number of old style and prototype parameters does not agree.
cc-142 cc: WARNING File = p4_error.c, Line = 174
The number of old style and prototype parameters does not agree.

A: These have to do with declarations for a signal handler and can be ignored.

33

13.3.3 Cray T3D
1. Q: When linking I get

mppldr-133 cf77: CAUTION
Unsatisfied external references have been encountered.

Unsatisfied external references
Entry name Modules referencing entry

GETARG (equivalenced to $USX1)
MPIR_GETARG

A: You may have specified the Fortran compiler with the -fc argument to configure.
The mpich Fortran implemenation of MPI uses a common Fortran extension, GETARG,
to get the command line arguments. Most Fortran runtime systems support this,
but Cray uses call pxfgetarg(i,s,len(s),ierr) instead. You can change the file
src/env/farg.f manually to call the correct routine (but note that configure builds
a new farg.f from farg.f.in each time that it is run).

13.3.4 Intel i860

1. Q: The link test fails on an Intel i860 with

icc -o overtake overtake.o test.o -L/mpich/lib/intelnx/ -lmpi -1lnode
/usr/ipsc/XDEV/1860/bin/1d860: Error: undefined symbol ’_MPI_Keyval_create’
/usr/ipsc/XDEV/1860/bin/1d860: Fatal: no output file created

A: You are probably building mpich on an old 386 running System V release 2. This
version of Unix has very severe limitations on the length of filenames (more severe
than we are willing to cater to). The specific problem here is that the name of the
file mpich/src/context/keyval_create.c is too long for this system and was not
properly archived. You best bet is to build mpich on a different, more modern system
(for example, a Sun running SunOS or Solaris).

13.3.5 Intel Paragon

1. Q: I got the following messages when I tried to build on the Paragon:

PGC-W-0115-Duplicate standard type (init.c: 576)
PGC/Paragon Paragon Rel R5.0: compilation completed with warnings
PGC-W-0115-Duplicate standard type (init.c: 576)
PGC/Paragon Paragon Rel R5.0: compilation completed with warnings

A: This is because the compiler doesn’t handle long long int but doesn’t reject it
either. It causes no harm.

34

13.3.6 SGI
1. Q: The build on an SGI Power Challenge fails with

Signal: SIGSEGV in Back End Driver phase.

Error:

Signal SIGSEGV in phase Back End Driver -- processing aborted
£77 ERROR: /usr/1ib64/cmplrs/be died due to signal 4

£77 ERROR: core dumped

x%* Error code 2 (bu21l)

x%* Error code 1 (bu21l)

x%* Error code 1 (bu21l)

vV V V V V VvV V

A: Our information is that setting the environment variable SGI_CC to -ansi will fix
this problem.

2. Q: The build on an SGI with architecture TRIXN32 fails with

cc: Warning: -c should not be used with ucode -03 -032 on a single file;
use -jinstead to get inter-module optimization.

A: Amagzingly, the standard -c option is not valid for the SGI compilers when both
-03 and -n32 are specified. This is a feature of the SGI compiler, and there is no way
to work around this for mpich (other than a massive and non-portable rewrite of all
the Makefiles). Your only option is to not use the -03 option.

13.3.7 LINUX

1. Q: The link test failed on LINUX 3.0 with

cc -o overtake overtake.o test.o -L/usr/local/mpich/1ib/LINUX/ch_p4
-Impi

overtake.o(.text+0x71): undefined reference to ‘MPI_COMM_WORLD’
overtake.o(.text+0x82): undefined reference to ‘MPIR_I_DOUBLE’
overtake.o(.text+0xel): undefined reference to ‘MPI_COMM_WORLD’

A: We have been informed that there is a error in the £77 script in some versions of
LINUX which causes this problem. Try either getting a patch for the £77 script or
reconfiguring with -nof77.

13.3.8 1IBM SP2

1. Q: Linking fails on an IBM SP2 for the ch_mpl device.

A: You may have a version of the IBM MPL/POE software that already includes
MPI. If that is the case, we recommend that you use that version. If you need to use
MPICH, configure with -mpilibname=mpich and rebuild MPICH.

35

2. Q: When trying to link on an IBM SPx, I get the message from mpirun:

mpCC -o overtake overtake.o test.o -L/usr/local/src/Mpi/1.0.11/
lib/rs6000/ch_eui -lmpi

1d: 0711-317 ERROR: Undefined symbol: .mp_main

1d: 0711-317 ERROR: Undefined symbol: .mp_environ

1d: 0711-317 ERROR: Undefined symbol: .mpc_bsend

A: Your IBM implementation does not seem to contain the MPL routines that mpich
uses to implement MPI. Your system may contain the IBM version of MPI; you should
use that instead.

We have been discussing with IBM a way to provide mpich on SP systems that also
have the IBM MPI; unfortunately, we have not been able to get the information that
we need.

In the interim, you can do the following:

Change the use of a library path (-L/usr/local/...), followed by -1lmpi, with an
explicit file name. For example, instead of

-L/usr/local/src/Mpi/1.0.11/1ib/rs6000/ch_eui -lmpi
do
/usr/local/src/Mpi/1.0.11/1ib/rs6000/ch_eui/libmpi.a

This change needs to be made in the Makefiles and in the scripts such as mpicc,
mpif77, and mpiCC.

13.3.9 DEC ULTRIX

1. Q: When trying to build, the make aborts early during the cleaning phase:
amon :MPICH/mpich>make clean
/bin/rm -f *.o *” nupshot

***x Error code 1

A: This is a bug in the shell support on some DEC ULTRIX systems. You may be
able to work around this with

setenv PROG_ENV SYSTEM_FIVE

Configuring with -make=s5make may also work.

36

13.4 Problems in Testing

The MPICH test suite, in examples/test, performs a fairly complete test of an MPI im-
plementation. If there is an error, it usually indicates a problem with the implementation of
MPI,; if you encounter such a problem, please report it to mpi-bugs@mcs.anl.gov. However,
there are a few exceptions that are described here.

1. Q: The test pt2pt/structf fails with

0 - Error in MPI_ADDRESS : Invalid argument: Address of location
given to MPI_ADDRESS does not fit in Fortran integer
[0] Aborting program!

A: This is not an error; it is a gap in the MPI definition. This indicates that For-
tran integers are not large enough to hold an address. This does indicate that MPI
programs written in Fortran should not use the MPI_Address function on this system.

2. Q: The test env/timers fails with
Timer around sleep(l) did not give 1 second; gave 0.399949

A: The low-level software that mpich uses probably makes use of the SIGALRM signal,
thus denying it to the user’s program. This is not an error (the standard permits
systems to make use of any signals) though it is unfortunate.

One system known to use SIGALAM is the IBM MPL/POE (device ch_mpl) software
for using the High Performance Switch in the IBM SPx parallel computers.

Acknowledgments

The work described in this report has benefited from conversations with and use by a large
number of people. We also thank those that have helped in the implementation of MPICH,
particularly Patrick Bridges and Edward Karrels. Particular thanks goes to Nathan Doss
and Anthony Skjellum for valuable help in the implementation and development of mpich.

37

References

[1]

[2]

Ralph Butler and Ewing Lusk. User’s guide to the p4 parallel programming system.
Technical Report ANL-92/17, Argonne National Laboratory, October 1992.

Ralph Butler and Ewing Lusk. Monitors, messages, and clusters: The p4 parallel pro-
gramming system. Parallel Computing, 20:547-564, April 1994. (Also Argonne National
Laboratory, Mathematics and Computer Science Division preprint MCS-P362-0493).

William Gropp and Ewing Lusk. An abstract device definition to support the implemen-
tation of a high-level message-passing interface. Preprint MCS-P342-1193, Mathematics
and Computer Science Division, Argonne National Laboratory, 1993.

William Gropp and Ewing Lusk. Scalable Unix tools on parallel processors. In Pro-
ceedings of the Scalable High Performance Computing Conference, pages 56-62. IEEE,
1994.

William Gropp and Ewing Lusk. User’s guide for mpich, a portable implementation of
MPI. Technical Report ANL-96/6, Argonne National Laboratory, 1996.

Virginia Herrarte and Ewing Lusk. Studying parallel program behavior with upshot.
Technical Report ANL-91/15, Argonne National Laboratory, Argonne, 1991.

Edward Karrels and Ewing Lusk. Performance analysis of MPI programs. In Jack Don-
garra and Bernard Tourancheau, editors, Proceedings of the Workshop on Fnvironments
and Tools For Parallel Scientific Computing, pages 195-200. STAM Publications, 1994.

38

Distribution for ANL-96/5

Internal:
J. M. Beumer (10)
F. Y. Fradin
W. D. Gropp (10)
E. L. Lusk (10)
G. W. Pieper
R. L. Stevens
C. L. Wilkinson
TIS File
External:

DOE-0STI, for distribution per UC-405 (52)
ANL-E Library
ANL-W Library
Manager, Chicago Operations Office, DOE
Mathematics and Computer Science Division Review Committee:
F. Berman, University of California at LaJolla
Cybenko, Dartmouth College
. DuPont, The University of Chicago
G. Glimm, State University of New York at Stony Brook
. T. Heath, University of Illinois, Urbana
. F. Infante, University of Minnesota
. Kunen, University of Wisconsin at Madison
R. E. 0’Malley, University of Washington
L. R. Petzold, University of Minnesota
F. Howes, Dept. of Energy - Office of Computational and Technology Research
D. Nelson, Dept. of Energy - Office of Computational and Technology Research

=M =EoaAa3a

39

